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Computations of the scattering of a finely dispersed impurity in a submerged jet 
are performed on the basis of a model taking account of turbulent diffusion and 
turbulent migration together. 

Up to now a sufficiently large quantity of publications has appeared that are devoted 
to computations of turbulent two-phase jet flows, [1-5], say. Two approaches are applied 
here to describe the mechanism of inertial particle interaction with the turbulent flow. 
The first approach is based on a modified Prandtl mixing-path theory [I, 2]. The second 
approach is related to the generalization of differential models for single-phase flow based 
on the equations for turbulent energy and other fluctuation characteristics, on disperse 
streams [3-5]. A simple model is represented in this paper to describe finely-dispersed 
impurity scattering within the framework of the second direction. 

Particles can be provisionally separated according to the nature of the behavior in a 
turbulent stream into fine, whose dynamic relaxation time z is less (or of the same order) 
than the characteristic lifetime of the power-intensive moles (the integral time scale of 
turbulence) T, and coarse whose relaxation time significantly exceeds the turbulence time 
scale. Many effects characteristic for coarse particles (in particular, the average slip 
with respect to the carrying current and the appearance of the Magnus force because of par- 
ticle rotation) turn out to be secondary for fine particles and interaction with turbulent 
fluctuations turns out to be primary; forces related to the inhomogeneity of the velocity 
fluctuation distribution of the carrying phase and the impurity concentration, turbulent 
migration and turbulent diffusion, play the most substantial part. We henceforth limit our- 
selves to the examination of disperse flows containing fine particles in a small (and more- 
over, volume) concentration. 

The mass and moment conservation equations of a discrete (solid) phase are written 
within the framework of the mechanics of interacting media [6] in the form 

a~ a~vh 
---- 0, (i) 

Ot Ox~ 

d~v~ O~v~vk ~(ui--vi) 
- - +  - - -  (2) 

at ax~, T 

The right side of (2) describes the force of viscous interaction between the phases in 
a Stokes approximation. It is assumed here that the density of the carrying gas phase is 
substantially less than the density of the particle material and, consequently, the forces 
due to the pressure gradient, the apparent mass, and the nonstationarity of the flow (Bass 
force) cannot be taken into account. 

Let us take the average of (i) and (2) over the ensemble of realizations of a turbulent 
�9 . < ! 

flow in such a manner that the relationship ~v=> = 0 would be satisfied. This method of 
i 

taking the average of the solid phase characteristics by using the particle concentration 
as a weight function is analogous to the known method of taking the Faure average in the 
theory of single-phase flows with variable density [7]. The averaged equations (i) and (2) 
take the form 
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where < v/vs > ---- (qv; v~ >/q) is the turbulent stress tensor in the solid phase. 

Let us note that taking the average of the gas phase characteristics is satisfied by 
the usual method without utilizing r as a weight function. 

We use the equation for disperse phase concentration fluctuations (i) obtained from (i) 
under the assumption that the term due to the gradient of the average concentration to cal- 
culate the correlation <~'u;> in (4) 

&p , o ~  
- -  ~ - - V  k -  
at OXh 

Integrating this  expression with respect to the time, then multiplying by u,'.(t) and 
taking the average over the ensemble of turbulent realizations, we obtain the following 
gradient representation 

< ~' . ;  > = - ~g < u;.~ > a____~m 
@xn 

where e (S)= (u/(t)u/(t-~-S)) / (u; (t) u;(t)> 
fluctuations along the particle trajectory. 

g=--x  ! 1--exp - -  F(S) dS, (5) 

is the correlation function of the gas velocity 

Taking the relationship (5) into account (4) takes the form 

OV~ OV~ _ a <viva> U~--V~ D~ OlnO (6) 
at + vh Oxh - "  Ox~ q �9 ~ - -  a x e '  

where D~h=~(<v~v~>+g<u~u~>)~is the turbulent diffusion tensor of the part ic les .  The f i r s t  
term in the right side of (6) describes the origination of turbulent stresses in the solid 
phase because of particle involvement in the fluctuating motion of the carrying stream and 
this latter governs the diffusion transfer of the momentum due to the concentration gradient. 

The system of equations of motion of the solid phase (3) and (6) agree with the corre- 
sponding equations for the first two moments obtained in [8] from the equation for the par- 
ticle distribution probability density in the phase space of the coordinates and velocities. 
These equations differ somewhat from the equations ordinarily utilized, for instance, [3-5], 
obtained by averaging without introducing the concentration as weight function. Although 
both approaches (averaging methods) are equivalent in principle, construction of relation- 
ships for the turbulent diffusion coefficient turns out to be more simple in this case. 

The following diffusion equation for the particle concentrations is obtained from (3) 
and (6) 

0s 
o q) o___(_ v /D o [ ,~ v y D O_~_m 

-t'- ~ -4:- OXl~ OXi (Dih -t- OXn -'C 

o (<v;v;> +V~V~)]. + to) Oxh 
(7) 

It is seen that in contrast to the process of noninertial impurity scattering described 
by a parabolic type diffusion equation, the change in inertial particle concentration is de- 
scribed by a hyperbolic type diffusion equation. As �9 + 0 (7) goes over into the usual dif- 
fusion equation for a noninertial impurity. 

Turbulent stresses in the solid phase are expressed in terms of the Reynolds stress in 
the gas phase by using the known relationship [9] 

<v;v~)= f<u/ u~>, f =  1~ i exp(___S)F(S)~ dS. (8) 

It follows from (8) that the fine particles are involved completely in the turbulent 
motion of the carrying flow (f + i as T/T + 0), and, conversely coarse particles are not in- 
volved in the fluctuating motion (f ~ 0 as T/T ~ =). Taking (5) and (8) into account, the 
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particle turbulent diffusion tensor is determined by the relationship Dik = T<UiUk >, i.e., 
agrees with the expression for a noninertial impurity (which corresponds to the Chen theorem 
[9]). 

Approximating F(s) by a step function as in [I0] 

f(S) = {~ f0rfor O~.~S~T,S>T, 

we obtain the following expression for the coefficients of particle involvement in the fluc- 
tuating motion of the carrying flow: 

[ ---- 1 - -  e x p ( - -  1/90, g = 1/~2 - -  1 + e x p ( - -  l / e ) .  

The finely dispersed impurity (~ <~ i0) distribution in the flows, whose longitudinal 
scale of parameter variation is substantially greater than the transverse scale (flows in 
thin jets are among this type in particular), can be analyzed in a diffusion-migration ap- 
proximation obtained from (7) when neglecting convective terms in the right side. For a 
stationary axisymmetric flow (7) takes the following form in a boundary layer theory approx- 
imat ion 

a [ ( D, o| .OqD  t ] OfU~@ _~ _ _  _ r 4- @ , 
Ox Or Or \ Or Or / J ( 9 )  

w h e r e  Dt = T < u~ 2 > = wt/Sct i s  t h e  t u r b u l e n t  d i f f u s i o n  c o e f f i c i e n t .  

The solution of (9) is a simpler problem as compared with the solution of (3) and (6) 
since the computation is performed in a single-velocity approximation in this case; however, 
the migration transport due to inhomogeneity of the turbulent fluctuations of the carrying 
flow is also taken into account in addition to diffusion transport characteristic for a non- 
inertial impurity. As the particle inertia increases the coefficient of migration q grows 
from zero to one; consequently, if the scattering of very fine particles (~ << I) is de- 
termined primarily by the turbulent diffusion process, then as the particle inertia grows 
the role of the migration mechanism is raised and the propagation with respect to the coarse 
particles (~ ~ i) is determined to a substantial degree by the turbulent migration process. 
It should be noted that the possibility of explaining the effect of tying the finely-disperse 
impurity in the initial section by the influence of turbulent migration (turbophoresis) was 
mentioned earlier in [3]. 

Limiting ourselves to the consideration of disperse flows for a small particle mass 
concentration (p2~a/p! << i) we neglect the reverse influence of the particles on the aver- 
age and fluctuation characteristics of the carrying medium. In this case a standard k-e 
model of turbulence with the correction introduced in [ii] in the equation for dissipation 
that takes account of the effect of vortex extension in a circular jet is used to describe 
the gas phase turbulent energy and velocity profiles in this case. The square of the veloc- 
ity fluctuation in the radial direction is determined by the relationship <u' 2> = 2K/3 (sat- 
isfied certainly for jet flows [i]) while the turbulence time scale is T = ~K/e, where ~ = 
0.17 (which corresponds to Sc t = 0.8 with ~t = c~ K2/E, c~ = 0.09 taken into account). 

,~ /_ \ v--b o --~ 
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Fig. i. Impurity concentration distribution along the jet 
axis (a) and along the jet section (b); a) i, 4) d = 0; 2, 5) 
7 ~m; 4) [12]; 5, 6) [14]; b) d = 0 (dash-dot line), d = 7 pm 
(solid line), d = 32 ~m (dashes); i) x/R = 4; 2) x/R = 12; 
3) xlR = 40; 4) [1]; 5) [13]. 
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The comparison between the computed and experimental data on the change in the impurity 
concentration along the jet axis is shown in the Fig. la for different values of the parti- 
cle radius. In the case of a noninertial impurity (d = 0) a monotonic diminution in the 
concentration is observed as the distancefrom the nozzle exit increases. Upon inserting a 
finely-dispersed inertial impurity in the flow in the initial section, growth of its concen- 
tration (the so-called tying effect) occurs, and then the particle concentration, as for a 
noninertial impurity, diminishes according to the law ~ ~ i/x. The increase in the impurity 
concentration is explained by the nonmonotonic nature of the turbulent energy change in the 
axial and radial directions for a high turbulence level in the jet initial section. This 
circumstance indicates the substantial influence of particle interaction with the turbulent 
fluctuations of the carrying flow on the nature of impurity scattering. As is seen from 
Fig. i, the clearly defined concentration maximum is observed as the particle size grows, 
which is explained by the rise in the role of the turbulent migration. Therefore, the tying 
effect, consisting of a nonmonotonic change in the particle concentration that is detected 
in experiments, is reproduced sufficiently well for a finely-dispersed impurity within the 
framework of the approximation under consideration because of taking tubulent migration into 
account. A certain discrepancy between the computed and experimental data is apparently ex- 
plained by neglecting the reverse influence of particles on the average and fluctuating flow 
configuration. 

Graphs of the change in impurity concentration in the jet transverse section are pre- 
sented in Fig. ib at different distances from the nozzle exit. It is seen that the change 
in concentration over the section is nonmonotonic in nature in the jet the initial section 
as in the axial direction. This effect is determined by the presence of a quite definite 
maximum shifted from the jet axis, in the actual turbulent energy distribution obtained both 
in computations and in experiments [15]. As the distance from the nozzle exit increases, 
the value of the maximum in the turbulent energy profile diminishes and the transverse par- 
ticle concentration distribution becomes monotonic. In the particle size range under inves- 
tigation the radial concentration distribution profile is filled up more as compared with the 
axial velocity profile; this fact indicates that the effective Shmidt number is greater than 
one. This circumstance is stressed repeatedly in investigations devoted to two-phase jet 
flows ([i], for instance). However, in contrast to [I], the effect mentioned is taken into 
account in the present model not by increasing the value of Sc t but because of taking turbu- 
lent migration into account. It should be noted that at large distances from the nozzle 
exit (x/R > 40) the inertial impurity distributions differ slightly from the noninertial, as 
is explained by the low level and smooth distribution of the turbulent energy, and there- 
fore, the insignificant role of the turbulent migration. 

As a whole, the diffusion-migration model permits satisfactory description of the 
finely-dispersed impurity distribution in both the longitudinal and transverse directions. 

NOTATION 

ui,Ui,vi,V i are the actual and averaged gas and solid phase velocities; ~, # is 
the actual and averaged volume impurity concentration; Pz,P2 are the gas and particle densi- 
ties; d is the particle diameter; ~ = p2d=/18p~v is the particle relaxation time; R is the 
nozzle radius; v t is the gas coefficient of turbulent viscosity; Sc t = vt/Dt is the turbu- 

t I > i ~  lent Schmidt number; k = <UkU k IZ is the turbulent energy;~E is the turbulent energy dissipa- 
tion; x, r are coordinates in the axial and radial directions; S = ~/T is the particle in- 
ertia parameter; q = ~f is the migration coefficient. Subscripts: m are values on the axis, 
and 0 are values on the nozzle exit. 
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On the basis of a two-layer scheme of turbulent motion around a wall, an expres- 
sion is obtained for the heat-transfer coefficient from swirling disperse flow 
to the cyclone wall. 

In engineering practice, the heat extraction from the lateral surface of the cyclone 
must often be estimated in calculating designing a cyclone-type heat exchanger. Accurate 
calculation of the heat fluxes from swirling disperse flow to the cyclone wall requires com- 
bined solution of the equations of energy and motion of the gas and the particles. Analyti- 
cal solution of this problem is not possible. Usually, various empirical dependences which 
are only valid for the values of the cyclone structural parameters corresponding to the par- 
ticular experiment [1-4] are used to calculate the convective heat-transfer coefficient from 
the gases to the lateral surface of the cyclone. In addition the empirical dependences pro- 
posed in the literature take no account of the influence of dust content on the heat-trans- 
fer coefficient. It is expedient to generalize these experimental data using the well- 
known methods of approximate solution of analogous problems - in particular, the two-layer 
scheme of turbulent motion around a wall [5]. Following this method, it is first assumed 
that, on reaching the cyclone, the gas and particles move downward to the wall region of the 
apparatus (as indicated by experiments) and are of identical temperature. 

By analogy with the problem of flow around a plane plate, it is assumed that the heat 
flux and tangential stress remain constant over the boundary layer and are equal to the cor- 
responding values at the cyclone surface (q = qwa, T = Twa). Then the following expressions 
may be written 

�9 w a _  ( ~ + ~ , )  1 a(vo, (1) 
p r dr 

a aT 
qwa=p --  ~ f  (a @ T) ~ar, (2)  

where Cef = Cg(l + pCs/Cg) is the effective specific heat of the disperse flow (it is assumed 
that, on account of the high intensity of interphase heat transfer, the temperature of the 
gas and the particles is the same). 
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